
Software Engineering for Safety: A Roadmap

Robyn R. Lutz
Jet Propulsion Laboratory

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099

This report describes the current state in software engineering for safety and proposes some
directions for needed work in the area that appears to be achievable in the near future.

Categories and Subject Descriptors: ? [?I: ?
General Terms: ?, ?

Additional Key Words and Phrases: ?, ?

1. INTRODUCTION
Many safety-critical systems rely on software to achieve their purposes. The number
of such systems increases as additional capabilities are realized in software. Mini-
turization and processing improvements have enabled the spread of safety-critical
systems from nuclear and defense applications to domains as diverse as implantable
medical devices, traffic control, smart vehicles, and interactive virtual environments.
Future technological advances and consumer markets can be expected to produce
more safety-critical applications. To meet this demand is a challenge. One of the
major findings in a recent report by the President’s Information Technology Advi-
sory Committee was, “The Nation depends on fragile software” [Committee 19991.

Safety is a system problem [Leveson 1995; McDermid 19961. Software can con-
tribute to a system’s safety or can compromise it by putting the system in a dan-
gerous state. Software engineering of a safety-critical system thus requires a clear
understanding of the software’s role in, and interactions with, the system. This
report describes the current state in software engineering for safety and proposes
some directions for needed work in the area.

The work described in this paper was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space Administra-
tion. finding was provided under NASA’s Code Q Software Program Center Initiative UPN

rlutz0cs.iastate.edu
#323-08. Address: 226 Atanasoff Hall, Iowa State University, Ames, IA 50011-1041, email

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, N Y 10036 USA, fax $1 (212) 869-0481, or permissionsQacm.org.

http://rlutz0cs.iastate.edu
http://permissionsQacm.org

2 * Robyn R. Lutz

The next section of the report gives a snapshot of six key areas in state-of-the-art
software engineering for safety: Hazard analysis, Safety requirements specification
and analysis, Designing for safety, Testing, Certification and standards, and Re-
sources. The section provides a overview of the central ideas and accomplishments
for each of these topics.

Section 3 of the report describes six thrusts for future work: Further integration of
informal and formal methods, Constraints on safe reuse and safe product families,
Testing and evaluation of safety-critical systems, Runtime monitoring, Education,
and Collaboration with related fields. The criteria used to choose the problems in
section 3 are that the problems are important to achieving safety in actual systems
(i.e., that people will use the results to build safer systems), that some approaches
to solving the problems are indicated in the literature, and that significant progress
toward solutions appears feasible in the next decade.

The report concludes with a brief summary of the two central points of the report:
(1) that software engineering for safety must continue to exploit advances in other
fields of computer science (e.g., formal methods, software architecture) to build
safer systems, and (2) that wider use of safety techniques awaits better integration
with industrial development environments.

2. CURRENT STATE
This section provides a snapshot of the current state in six central areas of software
engineering for safety.

2.1 Hazard Analysis
Since hazard analysis is at the core of the development of safe systems [Leveson
19951, we begin with a brief discussion of its use and the techniques used to imple
ment it in practice. System-level hazards are states that can lead to an accident.
An accident is defined as an unplanned event that results in “death, injury, illness,
damage to or loss of property, or environmental harm” pushby 19941. Hazards
are identified and analyzed in terms of their criticality (severity of effects) and risk
(probability of occurrence). The results of the system-level analysis are used to
make decisions as to which hazards to address. Some hazards are avoidable, so can
be eliminated (e.g., by changing the system design or the environment in which the
system operates), while other unacceptable hazards cannot be avoided and must
be handled by the system. System safety requirements to handle the unavoidable
hazards are then specified.

Further investigation determines which software components can contribute to
the existence or prevention of each hazard. Often, techniques such as fault tree
analysis, failure modes, effects, and criticality analysis (FMECA), and HAZOP
are used to help in this determination [DeLemos et al. 1995; Ippolito and Wallace
1995; Leveson 1995; Raheja 1991; Storey 1996; Sullivan et al. 19991. Combinations
of forward analysis methods (to identify the possibly hazardous consequences of
failures) and backward analysis methods (to investigate whether the hypothesized
failure is credible in the system) have proven especially effective for safety analyses
[Maier 1995; McDermid et al. 1995; Lutz and Woodhouse 19971. Safety require-
ments for the software are derived from the resulting descriptions of the software’s
behavior. These software safety requirements act as constraints on the design of the

Software Engineering for Safety: A Roadmap * 3

system. Software may be required to prevent the system from entering a hazardous
state (e.g., by mutual exclusion or timeouts), to detect a dangerous state (e.g., an
overpressure), or to move the system from a dangerous to a safe state (e.g., by
reconfiguration) [Lutz 19961.

The design specification is subsequently analysed to confirm that it satisfies the
safety-related software requirements. During implementation and testing, verifica-
tion continues to assure that the design is correctly implemented so as to remove
or mitigate hazards. The delivered system is validated against the safety-related
requirements, with oversight continuing during operations to assure that the re-
quirements were adequate. In practice the hazard analysis is usually iterative with,
for example, additional safety requirements being discovered during design or in te
gration testing.

Hazard analyses are also useful for helping prioritize requirements to focus re-
sources (e.g., testing) on the components or features that offer the greatest vulner-
ability for the system. As we will see below, hazard analyses often guide the choice
of which aspects or subsystems merit more intense scrutiny via formal methods.

2.2 Safety requirements specification and analysis

2.2.1 Shared problems. Many of the problems involved in identifying, specify-
ing, and verifying requirements are shared by the requirements engineering of non-
safety-critical systems. For example, if we look at Zave’s 1997 classification of
research efforts in requirements engineering, the work she identifies as needing to
be done will improve the software engineering of safety-critical systems [Zave 19971.
The three major categories of the needed research are: (1) problems of investigating
the goals, functions, and constraints of a software system, and (2) problems of spec-
ifying software system behavior, (3) problems of managing evolution of systems and
families of systems. Advances in each of these requirements engineering areas offers
opportunities for better elicitation, understanding, specification, reasoning about,
and control of the relationships between hazards and software safety requirements.
The reader is referred to Bashar Nuseibeh’s article elsewhere in this volume for
further information on these shared issues in requirements engineering.

2.2.2 Advances. Extensive investigation into the specification and analysis of re-
quirements for safety-critical systems has been performed in the last decade. This
is especially true in the area of formal methods [Clarke and et al. 1996; Cullyer
1991; Dutertre and Stavridou 1997; Heimdahl and Leveson 1996; Rushby 19951.
The use of formal specification is described by Axel van Lamsweerde elsewhere in
this volume, so only highlights of its use for safety-critical systems are given here.

One motivation for specifying requirements formally is that some notations make
review, design, implementation, and development of test cases easier and more
accurate. Formal documentation of requirements has also been shown to improve
the quality of the final product [Courtois and Parnaa 19931. Tabular notations, for
example, are familiar to engineers and supported by many tool environments.

Another motivation for specification of requirements in a formal notation is that
it allows formal analysis to investigate whether certain safety properties are pre-
served. For example, Dutertre and Stavridou specify an avionics system and verify
such safety requirements as, “If the backup channel is in control and is in a safe

4 * Robyn R. Lutz

state, it will stay in a safe state,” [Dutertre and Stavridou 19971. Automated checks
that the requirements are internally consistent and complete (i.e., all data are used,
all states are reachable) is often then available. Executable specifications allow the
user to exercise the safety requirements to make sure that they match the intent and
the reality. Interactive theorem provers can be used to analyze the specifications for
desired safety-critical properties. As an example, on one recent project there was
concern about whether a low-priority fault-recovery routine could be preempted
so often by higher-priority fault-recovery routines that it would never complete.
Because the requirements were formally specified, Lutz and Amp0 were able to
demonstrate using an interactive theorem prover that this undesirable situation
could, in fact, occur, and remedy it before implementation [Lutz and Amp0 19941.
Model checkers can be used to investigate whether any combination of circum-
stances represented in the specification can lead the system to enter an undesirable
state [Holzmann 19971.

Significant advances have been made in methods for translating system safety
requirements to software requirements. Historically, the discontinuity between sys-
tem and software safety requirements has been a problem. McDermid has criticized
the typical safety case for a software-based system in this regard. He notes that too
often a safety case first identifies which software components are critical, using clas-
sical safety analyses, and then argues that the likelihood of software contributing
to a hazard is acceptably low by referring to the development process rather than
whether the software product satisfies the system safety requirements WcDermid
et al. 19951.

SpecTRM, a toolset built by Leveson and her colleagues to support the devel-
opment of embedded systems, was designed to reduce the discontinuity between
system and the software requirements. It uses a formal specification language (built
on their earlier RSML) to specify a system as a collection of communicating, hierar-
chical state machines which can then be automatically checked for consistency and
some completeness properties. The toolset tries to reduce the gap between system
design and software requirements by reflecting how people actually use specifica-
tions to think about a complex system. For example, the interface between the
user and the controller (e.g., the displays) is explicitly modeled, and startup values
(a frequent source of faulty assumptions) automatically default to the safer value
of “unknown” [Heimdahl and Leveson 1996; Leveson et al. 19991.

2.3 Designing for Safety
Substantial overlap exists between the design techniques used for safety-critical
systems and those used for other critical or high-consequence systems. Rushby has
provided an excellent discussion of the similarities and differences among the safety
engineering, dependability, secure systems, and real-time systems approaches and
assurance techniques in [Rushby 19941. The description in the next two paragraphs
uses definitions and insights from his paper.

A dependable system is one for which reliance may justifiably be placed on certain
aspects of the quality of service that it delivers. Dependability is thus concerned pri-
marily with fault tolerance (i.e., providing an acceptable level of service even when
faults occur). Some of the design mechanisms for dependable systems are useful
for safety engineering, but there is often a tradeoff in terms of tightened coupling

Software Engineering for Safety: A Roadmap * 5

(increased interactions) and additional software complexity. Thus, dependability
mechanisms may in a particular application either enhance or reduce safety.

Safety engineering focuses on the consequences to be avoided and explicitly con-
siders the system context. Sometimes, as Rushby points out, there is no safe al-
ternative to normal service, in which case, the system must be dependable to be
safe. Real-time systems typically must be fault-tolerant and often involve timing-
dependent behavior that can lead to hazards if it is compromised. Secure systems
concentrate on preventing unauthorized disclosure of information, information in-
tegrity, and denial of service, and on assuring noninterference (e.g., via a covert
channel). As will be discussed in Section 3, some design techniques used to develop
secure or survivable systems have applications in safety-critical systems.

In hardware systems, redundancy and diversity are the most common ways to
reduce hazards. In software, designing in safety may also involve preventing hazard8
or detecting and controlling hazard8 when they occur. Hazard prevention design
includes mechanisms such as hardware lockouts to protect against software errors,
lockins, or interlocks, watchdog timers, isolation of safety-critical modules, and
sanity checks that the software is behaving as expected. Often such checks are
assertions stating either preconditions on the data input (that it is of the required
type or in the required range), postconditions on the data output, or invariants
that a dangerous state continues to be avoided.

Hazard detection and control includes mechanisms such as fail-safe designs, self-
tests, exception-handling, warnings to operators or users, and reconfigurations
[Leveson 19951. Fault-tolerance mechanisms for detecting and correcting known
faults in distributed, message-passing systems is a well-developed area; see, e.g.,
[Arora and Kulkarni 1998; Gardiner 1998; GMner 19991. Active protection (mon-
itoring and response) often involves additional software.

For software, there are several obstacles to the goal of designing safe systems.
Design tradeoffs. As was mentioned previously, design decisions usually involve
tradeoffs between safety and other desirable product attributes. Design methods for
fault-tolerance can contribute to safer systems, e.g., by providing predictable timing
behavior, but they can also create additional interactions between components and
levels of the system (e.g., to coordinate recovery from a hazardous state), which
is undesirable in a safety-critical system [Lutz and Wong 19921. Furthermore, as
Leveson points out, “often the resolution of conficts between safety constraints and
desired functionality involves moral, ethical, legal, financial, and societal decisions;
this is usually not a purely technical, optimization decision Feveson 19911. As
more safety-critical applications are built, commercial and marketing issues such as
timeto-market and liability may also become larger factors in design decisions.

Vulnerability to simple design errors. We tend to think of the problem of
designing in safety as one of managing complexity, but many accidents have simple
causes. As an example of a simple error with a large consequence, consider the
recent loss of the Mars Climate Orbiter spacecraft [NASA Mars Climate Orbiter
Mishap Investigation Board 19991. The root cause of the accident was a small
error, i.e., use of an English measurement where the software required a metric
measurement. The defect (type mismatch) was straightforward, well-understood,
easy to prevent in design, and easy to catch in testing. However, the sensitivity
of the system to this error was very high. Parnas points out that in conventional

6 * Robyn R. Lutz

engineering, every design is characterized by a tolerance, such that being within the
specified tolerance is adequate. The underlying assumption is that “small errors
have small consequences.” In software, this is not true. “NO useful interpretation
of tolerance is known for software” [Parnas et al. 19901. The limits to our ability
to develop safe systems is thus related to an innate characteristic of software.

Limited use of known design techniques A recent incident provides a dou-
ble illustration of the point that known, good-practice, design techniques for safe
systems are too often ignored. First, in July, 1998, the Aegis missile cruiser, USS
Yorktown, was crippled by the entry of a zero into a datafield, causing the database
to overflow and crash all LAN consoles and miniature remote terminal units. Pro-
tection against such bad data is a known design feature that was not used. Second,
the reported, corrective maintenance was not to fix the design, as would be ex-
pected, but to retraining the operators “to bypass a bad data field and change the
value if such a problem occurs again” [Slabodkin 19981. It may be that wider use
of known, safedesign features can be encouraged by quantification of the cost of
such failures. Strigini has suggested that our inability to quantify the return on
investment from methods to improve safety limits the use of those methods [Strigini
19941.

2.4 Testing
The role of testing is critical both to the development of safe systems and to their
certification. Safety requirements generated during system and software hazard
analysis are tracked into testing to validate that the as-built system satisfies them.
Since safety requirements often describe invariant conditions that must hold in all
circumstances, testing often verifies the fault-tolerant aspects of the software. Tests
can also demonstrate that the software responds appropriately to some anticipated
or envisioned, abnormal situations. Test cases often emphasize boundary conditions
(startup, shutdown) or anomalous (failure detection and recovery) conditions, since
hazards can result from improper handling of these vulnerable states. Weyuker has
incorporated the consequence of failure into a testsuite generation algorithm, in
order that states with low probability of execution but severe effects on the system
will be tested [Weyuker 19961.

Assumptions about environment. Unsafe systems can result from incorrect
assumptions about the environment in which the system will operate. This is
a constant difficulty in developing spacecraft software, for example, since many
aspects of the deep-space environment (vibration, radiation, etc.) are imperfectly
known prior to operations. Correctly identifying the point at which a hazardous
state will be entered and the set of adjustments that will return the system to a safe
state is complicated by these environmental uncertainties. Precise environmental
modeling is a great asset in developing such systems and in determining realistic,
operational testcases [Tsai et al. 19981.

Assumptions about users. Similarly, incorrect assumptions about the user or
operator of a system can lead to an unsafe system. For example, in testing a ride for
a software-generated, virtual reality amusement park, Disney discovered that users
were having problems “flying” their magic carpet [Pausch et al. 19961. Some users
felt that they were upside down when they weren’t, got dizzy, or even fainted. The
software allowed so much freedom in navigating the carpet that users sometimes

Software Engineering for Safety: A Roadmap 7

became disoriented. Significant human factors research tries to establish accurate
assumptions and benchmarks for such systems. However, it was in testing that the
mismatch with reality was discovered.

Assumptions about operations. While it was in the context of spacecraft,
not magic carpets, that the following remark was made, it sums up the tight link
between testing and use needed for a safe system: “Test like you fly, fly like you
test” [Dumas and Walton 19991. The statement also means that operations must
be constrained by the scope of the tests. The implications of this limit on safe oper-
ation for reuse and evolutionary software is discussed below. To sum up, especially
in safety-critical systems, “deep knowledge and experience with the application
area will be needed to determine the distribution from which the test cases should
be drawn” parnas et al. 19901. This is especially true for the identification of
hazardous scenarios for testing.

It has been proven that testing is not a sufficient condition for a safe system
[Butler and Finelli 1993; Littlewood and Wright 19971. It is infeasible to test
a safety-critical system enough to quantify its dependability. How much testing,
though, is enough for safety-critical systems? Littlewood and Wright have provided
a conservative, reliability- based (Bayesian) approach to calculate the number of
failure-free tests following a failed test [Littlewood and Wright 19971. Measuring
and modeling software reliability during testing and operations, e.g., through error
profiling, is an active research area, although the accuracy and use of reliability
growth models continue to be controversial [Parnas et al. 1990; Voas and Friedman
19951.

A recent book, based on technical reports from a research project in the UK,
describes the testing of safety-related software [Gardiner 19981. One chapter de-
scribes in detail the requirements for documentation of a safety case in the UK in
the context of testing. Among the required elements in a safety case is empirical
evidence of the system’s ability to satisfy the safety requirements. For the testing
stage, this is usually achieved through some combination of explanations as to how
the process adequately detects and removes defects through testing, backed up by
test results.

2.5 Certification and Standards
Certification of the software involves assessing it against certain criteria. The prob-
lem is that certification criteria for safety-critical systems are both more complicated
and less well-defined than for other software. This is of particular concern in light
of the growing need for international certification.

There are many standards for the development of safety-critical systems. McDer-
mid cites 100 in 1996 [McDermid 19961. A recent overview from the perspective of
certification of safety-critical systems is Podriguez-Dapena 19991. The author also
provides a list of international software safety initiatives with respect to standards.
Among the issues discussed is what standards are appropriate for large, safety-
critical systems composed of subsystems from different domains (e.g., a remote
telemedicine system that uses satellites and medical software). Often such systems
contain COTS (Commercial Off The Shelf) components or subsystems, previously
certified under different national authorities, that now must be integrated and cer-
tified.

8 * Robyn R. Lutz

There is widespread criticism of current safety standards. Problems include lack
of guidance in existing standards, poor integration of software issues with system
safety, and the heavy burden of making a safety case for certification [Roddguez-
Dapena 19991. Some of these same concerns are echoed in Fenton and Neil 19981,
where Fenton critiques the “very wide differerences of emphasis in specific safety-
critical standards.” Recommendations include classifying and evaluating standards
according to products, processes, and resources, and constructing domain specific
standards for products.

2.6 Resources
Several good books exist that describe techniques used in software safety engineer-
ing @aheja 1991; Storey 19961. Leveson’s 1995 book [Leveson 19951 is the standard
reference for the field. Another book, focusing on industrial practices, [Hermann
19991, will be released late in 1999.

There are extensive resources for software safety on the web. Jonathan Bowen’s
website, “Safety-Critical Systems,’’ provides links to many of these resources, in-
cluding newsgroups, mailing lists, courses, publications, conferences, the RISKS
Forum, and key groups in software safety and related areas in academia, industry,
and government [Bowen 1 . These groups include the High Integrity Systems Engi-
neering Group at the University of York, the Center for High Assurance Computing
Systems at the US. Naval Research Laboratory, NASA groups, the ESPRIT Prov-
ably Correct Systems and Predictably Dependable Computing Systems projects,
the Software Engineering Institute, and the High Integrity Software System As-
surance project at the U S . National Institute of Standards, among many others.
A recent IEEE video on the subject is “Developing Software for Safety Critical
Systems,” [Keene 19981.

3. DIRECTIONS
This section describes six directions for needed work in software engineering for
safety that appear to offer useful results in the near term: Further integration of
informal and formal methods, Constraints on safe reuse and safe product families,
Testing and evaluation of safety-critical systems, Runtime monitoring, Education,
and Collaboration with related fields.

3.1 Further integration of informal and formal methods
This subsection describes three thrusts that may provide readier access to formal
methods for developers of safety-critical systems.

Automatic translation of informal notations into formal models. Recent
research in software engineering has correctly emphasized closing the gap between
the descriptive notations most widely used by software developers and the more
formal methods that allow powerful automatic analyses. For example, Rockwell
Avionics used analysis and simulation of a machinecheckable formal model of r e
quirements for flight guidance mode logic to find latent errors, many of them signif-
icant. One of the identified directions for future work at the end of the report was
“engineers wanted a greater emphasis on graphical representation” [Miller 19981.
Integrating graphical design analysis tools, such as fault trees, with formal methods
can enhance safety analyses. (Fault trees have been formalized as temporal formula

Software Engineering for Safety: A Roadmap 9

in interval logic [Hansen et al. 19981.) More ambitiously, integration of visual pro-
gramming environments with formal methods opens up the possibility of improved
links between safety requirements and verification of implementation.

Tabular representation is another informal notation that has been successfully
linked to more formal notations in prototype tools. For example, since safety-
critical software is often specified in a tabular style, tool support has been developed
for tabular specification of decision-logic and for automatic checking of certain
properties of that logic [Heimdahl and Leveson 1996; Hoover et al. 1996; Leveson
19951. The push to provide a formal semantics for UML notations and automated
translators to formal languages will also support selective use of formal methods by
developers p ikk e t al. 19981. Continued work to support rigorous reasoning about
systems initially described with informal notations, and to help demonstrate the
consistency between informal and formal models, is needed.

Lightweight formal methods. The use of lightweight formal methods on
safety-critical systems has obtained good results in several experimental applica-
tions but more work is needed to better understand when it is appropriate [East-
erbrook et al. 1998; Feather et al. 1998; Heimdahl and Leveson 1996; Heitmeyer
et al. 1998; Lutz and Amp0 19941. Lightweight formal methods refers to automated
analysis approaches that involve rapid, low-cost use of fairly simple formal methods
tailored to the immediate needs of a project. This usually means limited modeling,
flexible use, building on existing products, highly selective scope, and foregoing
the extended capabilities of theorem provers or model checkers. In a report on
three case studies of applying lightweight formal methods for requirements analy-
sis, it was found that they provided a beneficial addition to existing requirements
engineering techniques and found important errors that had not been previously
identified [Easterbrook et al. 19981. These case studies used lightweight applications
of traditional formal methods (SCR*, PVS, SPIN). In another critical application
Feather instead used a database as the underlying reasoning engine for automated
consistency analysis of existing information sources. Feather’s work is also inter-
esting in that he analyses test logs. In contrast, most applications of lightweight
formal models so far have been directed toward requirements analysis.

There is as yet no consistent methodology for using lightweight formal methods,
nor for integrating results from multiple methods. In part this is due to the facts
that ready customization to a project’s immediate need drives the use of lightweight
formal methods and that results to date are primarily case studies. Some consid-
eration of methodological guidelines would be useful, however, both to make these
approaches even more lightweight (easy to apply) and to investigate whether op-
portunities for reuse of application methods (perhaps within the same domain)
have merit. In addition, studies of which lightweight approaches best provide sup-
port specifically for safety analyses of evolving requirements, design revisions, and
maintenance is needed.

Integration of previously distinct formal methods. Flexible use of multiple
methods is another step in creating an open development environment. Different
formal methods have different strengths, so being able to choose the best-suited
tool for distinct aspects or phases of a system without additional modeling is ben-
eficial. Work has been reported on the integration of theorem provers and model
checkers, formal requirements toolsets and theorem provers, high-level languages

10 * Robyn R. Lutz

and automatic verification, and architectural description languages and theorem
provers [Heitmeyer et al. 1998; Jagadeesan et al. 1995; Mikk et al. 1998; Owre
et al. 1996; Stavridou 19991. Clarke and Wing, et al., warn that the successful
integration of methods must both find a suitable style and find a suitable meaning
for using the different methods together, or risk a joint result that is no more useful
than the separate views of the specification. [Clarke and et al. 19961.

The improved integration of informal and formal methods is significant for soft-
ware system safety because it lets developers choose to specify or analyse critical
software components at a level of rigor they select. Formal methods allow demon-
strations prior to coding of crucial elements of the specification, e.g., that key safety
properties always hold or that entry to a certain hazardous state always leads to a
safe state.

An additional advantage of this integration from the perspective of safety is that
many formal methods have been used for both hardware and software specifica-
tions. Lutz has shown that critical software anomalies often involve misunder-
standings about the software/system interface [Lutz and Wong 19921, the use of
formal methods may help bridge the gap that often is created between the software
and the system developers. Executable specifications, especially those with a front-
end that the user can manipulate, allow exploration of assumptions and help elicit
latent requirements that may affect safety.

3.2 Constraints on safe reuse and safe product families

Two areas in which research in this area is currently needed are safety analysis of
product families and safe reuse of COTS.

Safety analysis of product families. With regard to the first direction, the
wish-list of the user community is quite ambitious. A recent workshop on product
families stated as one of the major goals, “to certify a set of safety-critical systems
at once.” One of the stated goals of product line architectural analysis was “any
analysis that can be performed on the generic aspects that also applies to all derived
instances” [Clements and Weiderman 19981. To even move towards these goals, we
need a much better understanding of the extent to which systems with similar
requirements can reuse requirements analyses. Clearly, it is the minor variations
among the systems (requirements, environment, platform) and the interactions be-
tween these variations that will be hardest to characterize, formalize, and verify
in terms of safety effects. Some initial work by Lutz with safety-critical product
families has identified some modeling decisions that can have safety consequences
and derived some safety requirements [Lutz 20001.

Safe reuse of COTS. With regard to the second item, there are two problems.
The first is, in McDermid’s words, “the need to better understand to how retrospec-
tively assess the COTS product to determine its fitness for a particular application”
[Talbert 19981. He suggests that suppliers may soon provide a certificate that ef-
fectively guarantees the behavior of a software component. In addition, the system
and the environment (both original and target) need to be understood sufficiently
to identify when software is being used outside the “operational envelope” for which
it was originally designed and tested [Gardiner 19981.

The second problem is not so much how to confirm that the software does what
it should, but how to confirm that it does not do other things as well. The prob-

Software Engineering for Safety: A Roadmap * 11

lem of additional, unexpected behavior is an especial concern with safety-related
COTS since there is a need for predictable, limited interactions and dependencies
among components [Profeta et al. 19961. Rushby suggests that traditional meth-
ods of hierarchical verification via functional refinement may be inadequate and
that notions of architectural notions of refinement may provide better verification
[Rushby 19941.

3.3 Testing and evaluation of safety-critical systems
This subsection of the paper describes four challenges to improved testing and
evaluation of safety-critical systems.

Requirements-based testing. Better links are needed between safety require-
ments and test cases. This entails both tighter integration of testing tools with
requirements analysis tools (see, e.g., Knight and Nakano 1997]), and improved
testcase generation for safety-related scenarios.

An additional challenge is to better support evolutionary development that uses
exploratory programming as its process model [Sommerville 19961. Finkelstein in
1994 identified as an open problem how to, in an unconventional development pro-
cess, maintain a link between requirements and the overall system development
Finkelstein 19941. Similarly, traditional hazard analyses assume that safety re-
quirements are identified prior to implementation. However, in the actual develop-
ment of many systems, safety requirements (e.g., constraints, user interfaces) are
often derived primarily from testing of prototypes [Berry 19981. Knowledge of these
new safety requirements then needs to propagate in a predictable manner to later
testing of the evolving product. Mechanisms for this are currently lacking.

Evaluation from multiple sources. Parnas in 1990 stated that “the safety
and trustworthiness of the system will rest on a tripod made up of testing, mathe-
matical review, and certification of personnel and process [Parnas et al. 19901.” The
importance of combining evidence from multiple sources regarding the safety of a
product is undisputed, but how to structure and combine this disparate information
is still an open problem [Strigini 19941.

An additional source of evaluation that must be considered is field studies of
deployed systems. Field data are important for requirements elicitation for subse-
quent members of a product family, for the maintenance required to assure safety
of an evolving product, and for identification of realistic test scenarios. The follow-
ing description of a pacemaker demonstrates how integral a field study can be to
the safety of a system: “Observing implanting sessions at hospitals showed us that
doctors and nurses may come up with numerous scenarios, some of which are diffi-
cult to foresee during system design. Unless we carry out a detailed field study at
hospitals, we may not be able to identify these scenarios. Missing use scenarios can
be disastrous. A problem may go undetected, and the device may fail in the field”
[Tsai et al. 19981. This “product in a process” assessment [Laprie and Littlewood
19921 has not yet been adequately incorporated into the testing and evaluation of
safety-critical systems.

Model consistency. Mismatches betwen the actual behavior of a system and
the operator’s mental model of that behavior are common, especially in complicated
systems, and are a contributor to hazardous states (e.g., mode confusion in pilots).
Such discrepancies between actual (i.e., required) and expected behavior can be

12 * Robyn R. Lutz

hard to discover in testing. Rushby shows that by modeling both the system and
the operator’s expectation, a mechanized comparison of all possible behaviors of
the two systems can be performed via formal models (here, the state exploration
tool Mur$ [Rushby 1999aI. Proposed changes to remove the mismatches (e.g.,
improved displays) can also be run through the model checker to evaluate whether
they remedy the problem. Rushby suggests that instruction manuals for operators
could be similarly modeled to check their accuracy, and that the number of states
required for the mental model might provide a useful measure of the mental load
placed on the operator.

Virtual environments. The use of virtual environment (VE) simulations to
help design, test, and certify safety-critical systems is on the horizon, driven by
enthusiasm of industrial users. As Cruz and Lutz have pointed out, methodologies
to support the use of VE in testing, as well as standards for tool qualification
of VE currently lag the market [Cruz-Neira and Lutz 19991. The centrality of
human factors and the widely varying response of individuals to a particular VE
(e.g., some users experience disorientation and nausea) complicate understanding
of a VE’s fidelity to the actual system. For software engineers, virtual environments
offer a powerful means of integration and systems testing. Their safe use in systems
needs to be further addressed.

3.4 Runtime Monitoring

The use of autonomous software to monitor and respond to operational activity is
widespread. Such software can be used to enhance the safety of a system by d e
tecting and recovering from (or masking) hazardous states. This subsection briefly
describes needed work to detect faults and to return to a safe state. It also describes
work in profiling system usage to enhance safety analyses.

Runtime monitoring is especially well-suited to known, expected hazardous con-
ditions. Detection of known faults through runtime monitoring can involve trade-
offs between increased safety on the one hand and increased complexity, decreased
availability, and decreased performance on the other hand. As was seen earlier, the
basis for these tradeoffs is usually informal and often unconscious. Requirements
and architectural analyses are needed that can help designers reason about these
decisions.

Detection of unexpected, hazardous scenarios is more difficult. The use of remote
agents to compare a system’s expected state with its sensed state and request action
if the difference is unacceptable offers promise in this field. For example, on the
spacecraft Deep Space One, one part of the remote agent software is the Mode
Identification and Reconfiguration system (MIR). MIR contains models describing
the combinations of expected behaviors of the components in various situations.
MIR also receives information from another system regarding what activities are
currently planned for the spacecraft and sensor data from the different components.
MIR then compares the actual state of the spacecraft based on the sensor data
to the state it expects based on the models and the planned activities. If MIR
detects a mismatch, e.g., that unit A should be sending a signal (according to
the plan), and that unit A draws power when it sends a signal (according to the
model), but that unit A is not drawing power (according to its sensor), it then
searches its models for a failure mode that matches the current sensor reading. This

Software Engineering for Safety: A Roadmap * 13

diagnosis, together with a recommendation for recovery action, is then available to
the executive software [Northwestern University’s Qualitative Reasoning Group 3 .

Runtime monitoring to profile usage has been used most widely to guide main-
tenance or ensure survivability (e.g., against hacker attacks). However, runtime
monitoring techniques can also support safety in several ways. Profiling system
usage can identify evolving conditions that may threaten the system, deviations
from safety requirements, and operational usage that is inconsistent with the safety
assumptions. Feather, Fickas, van Lamsweerde, and Ponsard, for example, com-
bine runtime monitoring with goal-based reasoning about requirements (which can
include safety requirements) and strategies for reconciling deviations of the runtime
behavior from the requirements [Feather et al. 19981. Such an approach may be
particularly useful for systems with reusable components (see discussion above) or
evolvable, self-adapting architectures.

3.5 Education
Few courses are currently offered in universities on the software engineering of
safety. At the graduate level, the courses are often part of the master’s of software
engineering curriculum in programs for practitioners. The focus of such courses
thus tends to be methodological (e.g., how to perform an FMECA) rather than
scientific. As discussed below, many of the advances in software engineering for
safety will come from developments in related areas. There is a need for courses in
safety that build on prior education in fault tolerance, security, systems engineering,
experimental techniques, and specific application domains.

At the undergraduate level, student exposure to safety-critical systems is mini-
mal. Despite extensive media coverage of software hazards (Y2K, transportation
and communication disasters, etc.), the notion that one’s own software might jeop-
ardize a system, much less a life, is novel to many students. Three partial remedies
are as follows: (1) There is a need for casebased learning modules to encourage
a systems approach to software safety (along the lines of Pfleeger’s use of Ariane
5 as a case study in [Pfleeger 19981 or the Dagstuhl case studies in [Abrial et al.
1996; Borger et al. 19991). (2) A textbook on software engineering for safety is
needed (currently Storey’s is the only textbook with problem sets [Storey 19961).
(3) Wider use of popular accounts of accidents and their causes (e.g., [Neumann
; Neumann 1995; Peterson 1995; Petrowski 19921) in software engineering courses
will reinforce the notion that software can contribute to hazards.

3.6 Collaboration with Related Fields
Progress in software engineering for safety can leverage advances in related fields.
This subsection briefly presents prroblems in four related fields whose solutions have
potential benefits for safety. The inverse topic, i.e., advances in software engineering
for safety that may be useful to other fields, can be inferred from the discussion,
but is not explicitly addressed here.

Security and survivability. Ties between safety and security have begun to
be explored as offering productive ways to reason about and design safe systems.
As Berry noted, “There is a whole repertoire of techniques for identifying and
analyzing security threats, and these are very similar in flavor to the techniques
used for identifying and analyzing system hazards” [Berry 19981. Examples include

14 * Robyn R. Lutz

anomaly-based intrusion detection; noninterference and containment strategies; se-
curity kernels; coordinated responses to attacks (faults); and robust, open-source
software [Neumann ; Rushby 19941. Sullivan, Knight, Du, and Geist [Sullivan et al.
19991 have recently demonstrated survivability hardening of a legacy information
system by a wrapping technique that allows additional control (e.g., for reconfigu-
ration).

Sofiware architecture. The relationships between architectural attributes and
safety are still largely undefined. Four problems of particular interest are the fol-
lowing: (1) The safety consequences of flexible and adaptable architectures (e.g.,
using integrated systems for in-flight reconfiguration) [Stavridou 19991; (2) Evalua-
tion of architectures for safety-critical product families [Gannod and Lutz tted]; (3)
Partitioning to control hazards enabled by shared resources pushby 1999bl;; and
(4) Architectural solutions to the need described by Neumann as “techniques that
augment the robustness of less robust components [Neumann 1 . For example, when
a safety-critical system is built using legacy subsystems or databases, an operating
system with known failure modes, and COTS components from multiple sources,
architectural analysis offers an avenue for safety analysis of the integrated system.

Theoretical computer science. The report put out by a recent NSF-sponsored
Workshop on Research in Theoretical Computer Science identifies “Safe and Veri-
fiable Software” as one of five areas in which theoretical computer science can help
meet the technological challenge [nsf 19991. Specifically, advances in model checking
and in logics of programs can improve the capabilities and performance of formal
specification and verification methods.

Human factors engineering. Human factors engineering is another area in
which both additional research and additional assimilation of existing results are
needed. Better understanding of usage patterns, based on field studies, and formal
specification of operator’s mental models can yield more accurate safety require-
ments and safer maintenance. One of the ways that we can avoid past mistakes is
by cataloging them in such a way that future users take note. A technique that
merits extension to other domains is Leveson’s list of design features prone to caus-
ing operator mode awareness errors [Leveson et al. 19971. The items in such a list
can be included in checklists for design and code inspections, investigated in formal
models, or used in testcase generation.

3.7 Other Areas

Several important areas have been excluded from discussion here due to space lim-
itations. For example, domain-specific designs for fault tolerance can contribute
significantly to safe systems. Advances in operating systems (support for real-time
safety-critical applications), programming languages (safe subsets of languages,
techniques relating programming languages to specification languages and natu-
ral languages), and temporal logics (reasoning about critical timing constraints)
are other areas important to safety. The reader is referred to [Alur and Henzinger
1991; Cullyer et al. 1991; Gunter et al. 1996; Sifakis 1996; Zave 19971 for discussions
of these topics.

Software Engineering for Safety: A Roadmap * 15

4. CONCLUSION
This report has described the current state of software engineering for safety in
several key areas and presented directions for future work to improve these areas.
In summary, the future seems to offer (1) continued exploitation of advances in
related fields in order to build safer systems, and (2) better integration of safety
techniques with industrial development environments.

REFERENCES
1999. Challenges for theory of computing. Report of an NSF-Sponsored Workshop on

Research in Theoretical Computer Science; linked to Selman url.
AERIAL, J . - R . , BORGER, E., AND LANGMAACK, H. 1996. Formal Methods for Industrial Ap-

plications: Specifying and Programming the Steam Boiler Control, Volume 1165 of LCNS.
Springer-Verlag.

ALUR,. R. AND HENZINGER, T. A. 1991. Real Time: Theory in Practice, Volume 600 of
LCNS, Chapter Logics and models of real time: a survey, pp. 74-106. Springer-Verlag.

ARORA, A. AND KULKARNI, S. S. 1998. Detectors and correctors: A theory of fault-tolerance
components. IEEE Tmns on Software Eng 24, 1, 63-78.

BERRY, D. M. 1998. The safety requirements engineering dilemma. In P m of 9th Intern
Workshop on Software Specification and Design (1998).

BORGER, E., HORGER, B., PARNAS, D., AND ROMBACH, D. 1999. Requirements capture,
documentation, and validation. Technical Report 242, Dagstuhl.

BOWEN, J . Safety-critical systems. http://archive.comlab.ox.ac.uk/safety.html.
BUTLER, R. W. AND FINELLI, G. B. 1993. The infeasibility of quantifying the reliability of

life-critical real-time software. Tmns on Software Eng 19, 3-12.
CLARKE, E. M. AND ET AL., J . M. W. 1996. Formal methods: State of the art and future

directions. ACM Computing Surveys 28, 4, 626-643.
CLEMENTS, P. C. AND WEIDERMAN, N. 1998. Report on the 2nd international workshop on

development and evolution of software architectures for product families. Technical Report

COMMITTEE, P. I. T. A. 1999. Information Technology Research: Investing in Our Future.
COURTOIS, P . - J . AND PARNAS, D. L. 1993. Documentation for safety critical software. In

CRUZ-NEIRA, C. AND LUTZ, R. R. 1999. Using immersive virtual environments for certifi-

CULLYER, J . 1991. Safety-critical control systems. Computing and Control Engineering

CULLYER, W. J . , GOODENOUGH, S . J . , AND WICHMANN, B. A. 1991. The choices of com-

98-SR-003, CMU/SEI.

P m IEEE 15th Intern Conf on Software Eng (1993), pp. 315-323.

cation. IEEE Software 16, 4, 26-30.

Journal 2, 5, 202-210.

puter languages for use in safety critical systems. Software Engineering Journal 6, 51-58.
DELEMOS, R., SAEED, A., AND ANDERSON, T. 1995. Analyzing safety requirements for

process-control systems. IEEE Software, 42-53.
DUMAS, L . AND WALTON, A. 1999. Faster, better, cheaper: an institutional view. In P m

50th Annual Intern Astronautical Congress (1999).
DUTERTRE, B. AND STAVRIDOU, V. 1997. Formal requirements analysis of an avionics control

system. IEEE Tmns on Software Eng 23, 5, 267-278.
EASTERBROOK, S., LUTZ, R., COVINGTON, R., KELLY, J . , AMPO, Y. , AND HAMILTON, D. 1998.

Experiences using lightweight formal methods for requirements modeling. IEEE 'hns on
Software Eng 24, 1, 4-14.

ing systems requirements and runtime behavior. In P m 9th IEEE Intern Workshop on
Software Specification and Design (1998).

FENTON, N. E. AND N E I L , M. 1998. A strategy for improving safety related software engi-
neering standards. IEEE h n s on Software Eng 24, 11, 1002-1013.

FEATHER, M. s., FICKAS, s., VAN LAMSWEERDE, A., AND PONSARD, c. 1998. Reconcil-

http://archive.comlab.ox.ac.uk/safety.html

16 Robyn R. Lutz

FINKELSTEIN, A. 1994. Requirements engineering: a review and research agenda. In P m

GANNOD, G. C. AND LUTZ, R. R. submitted. An approach to architectural analysis of

GARDINER, S. Ed. 1998. Testing Safety-Related Software. Springer-Verlag, London.
GARTNER, F. C. 1999. Fundamentals of fault-tolerant distributed computing. ACM Com-

puting Surveys 31, 1.
GUNTER, C., MITCHELL, J. , AND NOTKIN, D. 1996. Strategic directions in software engi-

neering and programming languages. ACM Computing Surveys 28, 4, 727-737.
HANSEN, K., RAVN, A. P., AND STAVRIDOU, V. 1998. From safety analysis t o Software

requirements. ZEEE h n s on Software Eng 24, 7, 573-584.
HEIMDAHL, M. P. E. AND LEVESON, N. 1996. Completeness and consistency in hierarchical

statebased requirements. IEEE h n s on Software Engineering 22, 6, 363-377.
HEITMEYER, C., KIRBY, J., LABAW, B., ARCHER, M., AND BHARADWAJ, R. 1998. Using

abstraction and model checking to detect safety violations in requirements specification.
IEEE h n s on Software Eng 24, 11, 927-949.

1st Asian and Pacific Software Engineering Conference (1994), pp. 10-19.

product lines (submitted).

HERMANN, D. S. 1999. Software Safety and Reliability. IEEE Computer Society Press.
HOLZMANN, G. J. 1997. The model checker spin. IEEE h n s on Software Eng 23, 5,279-

HOOVER, D. N., GUASPARI, D., AND HUMENN, P. 1996. Applications of formal methods to
specification and safety of avionics software. Technical report, NASA Langley.

IPPOLITO, L. M. AND WALLACE, D. R. 1995. A study on hazard analysis in high integrity
software standards and guidelines. Technical Report NISTR 5589, U.S. Department of
Commerce.

JAGADEESAN, L. J., PUCHOL, C., JAMES E. VON OLNHAUSEN, T. . S. P. V. 0. E. P., AND
TO TELECOMMUNICATIONS SOFTWARE, A. 1995. Volume 939 of LNCS, pp. 127-140.
Springer-Verlag.

KEENE, S. J. 1998. Developing software for safety critical systems. IEEE, NTSC ISBN

KNIGHT, J. C. AND NAKANO, L. G. 1997. Software test techniques for system fault-tree
analysis. In Proc of 16th Intern Conf on Computer Safety, Reliability, and Security (1997).

LAPRIE, J.-C. AND LITTLEWOOD, B. 1992. Probabilistic assessment of safety-critical soft-
ware: Why and how? CACM 35, 2, 13-21.

LEVESON, N. 1991. Software safety in embedded computer systems. CACM 34, 2, 35-46.
LEVESON, N. 1995. Safeware. Addison-Wesley, Reading, MA.
LEVESON, N. G., HEIMDAHL, M. P. E., AND REESE, J. D. 1999. Designing specification

languages for process control systems: Lessons learned and steps to the future. In SZGSOFT
Foundations of Software Engineering (1999).

LEVESON, N. G., PINNEL, L. D., SANDYS, S. D., KOGA, S., AND REESE, J . D. 1997. Ana-
lyzing software specifications for mode confusion potential. In Proc Workshop on Human
Error and System Development (1997), pp. 132-146.

LITTLEWOOD, B. AND WRIGHT, D. 1997. Some conservative stopping rules for the opera-
tional testing of safety-critical software. ZEEE Thns on Software Eng 23, 11, 673-683.

LUTZ, R. R. 1996. Targeting safety-related errors during software requirements analysis.
Journal of Systems and Software 34, 223-230.

LUTZ, R. R. to appear, 2000. Extending the product family approach to support safe reuse.
Journal of Systems and Software.

LUTZ, R. R. AND AMPO, Y . 1994. Experience report: Using formal methods for require-
ments analysis of critical spacecraft software. In Proc of 19th Annual Software Engineering
Workshop (1994), pp. 231-248.

LUTZ, R. R. AND WONG, J. S. K. 1992. Detecting unsafe error recovery schedules. IEEE
h n s on Software Engineering 18, 8, 749-760.

295.

0-7803-4573-8.

Software Engineering for Safety: A Roadmap * 17

LUTZ, R. R. AND WOODHOUSE, R. 1997. Requirements analysis using forward and bxkward
search. Annals of Software Engineering 3, 459-475.

MAIER, T. 1995. FMEA and FTA to support safe design of embedded software in safety-
critical systems. In P m CSR 12th Annual Workshop on Safety and Reliability of Software
Based Systems (1995).

MCDERMID, J . A. 1996. Computing Tomorrow, Future Research Directions in Computer
Science, Chapter Engineering Safety-Critical Systems, pp. 217-245. Cambridge University
Press, Cambridge.

MCDERMID, J. A., NICHOLSON, M., PUMFREY, D. J., AND FENELON, P. 1995. Experience
with the application of HAZOP to computer-based systems. In Pmc of 10th Annual Conf
on Computer Assurance (1995), pp. 37-48.

MIKK, E., LAKHNECH, Y., SIEGEL, M., AND HOLZMANN, G. J. 1998. Implementing state-
charts in promela/spin. In Pmc 2nd IEEE Workshop on Industrial-Strength Formal Spec-
ification Techniques (1998).

MILLER, S. P. 1998. Specifying the mode logic of a flight guidance system in coRe and SCR.
In Proc Formal Methods in Software Pmctice Workshop (1998), pp. 44-53.

NASA MARS CLIMATE ORBITER MISHAP INVESTIGATION BOARD. 1999. Phase i report.
NEUMANN, P. G. The risks digest. http:/ /w.csl .ari .com/fisko/risks.html;

NEUMANN, P. G. 1995. Computer Related Risks. ACM Press.
NORTHWESTERN UNIVERSITY’S QUALITATIVE REASONING GROUP. Welcome to the principles of

operations.http://rar.arc.nasa.gov:80/activities/pofo/docs/index.html.
OWRE, S., RAJAN, S., RUSHBY, J., SHANKAR, N., AND SRIVAS, M. 1996. PVS: Combin-

ing specification, proof checking, and model checking. In R. ALUR AND T. A. HENZINGER
Eds., Computer-Aided Verification, CAV ’96, Number 1102 in Lecture Notes in Computer
Science (New Brunswick, NJ, July/August 1996), pp. 411-414. Springer-Verlag.

PARNAS, D. L., VAN SCHOUWEN, J., AND KWAN, S. P . 1990. Evaluation of safety-critical
software. CACM 33, 6, 636-648.

PAUSCH, R., SNODDY, J., TAYLOR, R., WATSON, S. , AND HASELTINE, E. 1996. Disney’s
Aladdin: First steps toward storytelling in virtual reality. In P m Siggmph (1996), pp.

PETERSON, I. 1995. Fatal Defect: Chasing Killer Computer Bugs. Times Books, New York.
PETROWSKI, H. 1992. To engineer is human. Vintage Books, New York.
PFLEEGER, S. L. 1998. Software Engineering Theory and Pmctice. Prentice-Hall, Upper

Saddle River, NJ.
PROFETA, J. A. I., ANDRIANOS, N. P., Yu, B., JOHNSON, B. W., DELONG, T. A., GUASPARI,

D., AND JAMSEK, D. 1996. Safety-critical systems built with cots. Computer 29, 11,

http://catless.ncl.ac.uk/Risks.

193-203.

54-60.
RAHEJA, D. 1991. Assurance Technologies: principles and practices. McGraw-Hill.
RODR~GUEZ-DAPENA, P. 1999. Software safety certification: A multidomain problem. IEEE

Software 16, 4,31-38.
RUSHBY, J . 1994. Critical system properties: Survey and taxonomy. Reliability Engineering

and System Safety 43, 2, 189-214.
RUSHBY, J. 1995. Safety and Reliability of Software Based Systems, Chapter Formal Meth-

ods and their Role in the Certification of Critical Systems, pp. 1-42. Springer.
RUSHBY, J. 1999a. Using model checking to help discover mode confusions and other au-

tomation surprises. In Proc 3rd Workshop on Human Error, Safety, and System Develop-
ment (1999).

RUSHBY, J . M. 199913. Partitioning in avionics architectures: Requirements, mechanisms,
and assurance. Technical report (March), SRI.

SIFAKIS, J. 1996. Research directions for formal methods. ACM Computing Surveys 28,4es.
SLABODKIN, G . 1998. Software glitches leave navy smart ship dead in the water.

http://w.gcn.com/archives/gcn/1998/3uly13/cov2.htm.

http://w.csl.ari.com/fisko/risks.html
http://catless.ncl.ac.uk/Risks
http://w.gcn.com/archives/gcn/1998/3uly13/cov2.htm

18 - Robyn R. Lutz

SOMMERVILLE, I. 1996. software Engineering (fifth ed.). Addison-Wesley, Wokingham, Eng-
land.

STAVRIDOU, V. 1999. Provably dependent software architectures for adaptable avionics. In
P m 18th Digital Avionics Systems Conf (1999).

STOREY, N. 1996. Safety-Critical Computer Systems. Addison Wesley Longman, Harlow,
England.

STRIGINI, L. 1994. Considerations on current research issues in software safety. Reliability
Engineering and System Safety 43, 177-188.

SULLIVAN, K., DUGAN, J. B., AND COPPIT, D. 1999. The Galileo fault tree analysis tool. In
P m 29th Annual IEEE Intern Symposium on Fault-Tolerant Computing (1999).

SULLIVAN, K., KNIGHT, J. C., Du, X., AND GEIST, S. 1999. Information survivabilitycontrol
systems. In Proceedings of the 21st Intern Confon Software Engineering (1999), pp. 184-
192.

TALBERT, N. 1998. The cost of COTS: An interview with John McDermid. Computer 31,6,

TSAI, W.-T., MOJDEHBAKHSH, R., AND RAYADURGAM, S. 1998. Capturing safety-critical

VOAS, J . AND FRIEDMAN, M. 1995. Software Assessment: Reliability, Safety, Testability.

WEYUKER, E. J. 1996. Using failure cost information for testing and reliability assessment.

ZAVE, P. 1997. Classification of research efforts in requirements engineering. ACM Com-

46-52.

medical requirements. Computer 31, 4, 40-41.

John Wiley and Sons.

ACM %ns on Software Engineering and Methodology 5, 2, 87-98.

puting Surveys 29, 4, 315-321.

